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Abstract
Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of
damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of
bioactive molecules—besides microRNAs, hormones, and neurotrophins—with anti-inflammatory, immunoregulatory, angio-
genic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue.
Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their
actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from
adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this
paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in
regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of
action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their
impact on glial cells and brain pathologies.
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Abbreviations
ASCs Adult stem cells
AFSCs Amniotic fluid stem cells

CNS Central nervous system
CM-A-MSC Conditioned medium of mesenchymal

cells derived from adipose tissue
BM-MSC Conditioned medium of mesenchymal

stem cells derived from bone marrow
CM-MSCs Conditioned medium of mesenchymal

stem cells
DPSCs Dental plug stem cells
ESCs Embryonic stem cells
EpSCs Epithelial stem cells
FSC Fetal stem cells
HSC Hematopoietic stem cells
HSC Hepatic stem cells
HI Hypoxic-ischemic
IPSC Induced pluripotent stem cells
A-MSC Mesenchymal cells derived from

adipose tissue
MSCs Mesenchymal stem cells
BM-MSC Mesenchymal stem cells derived

from bone marrow
hUCB-MSC Mesenchymal stem cells of the human

umbilical cord
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L-MSC Mesenchymal stromal cells derived
from the limbus

NSC Neural stem cells
PSC Pluripotent stem cells
ROS Oxygen species
RNS Reactive nitrogen species
SCI Spinal cord injury
TBI Traumatic brain injury
UCB Umbilical cord blood
UCPVC Umbilical cord stem cells
UCPVC Umbilical cord stem cells
WJSC Wharton gelatin stem cells

Introduction

Recent studies have demonstrated the ability of mesenchymal
stem cells (MSCs) to differentiate into a variety of functional
tissues, which are often affected by different diseases and
injuries [1–3]. For this reason, MSCs have been considered
as one of the most promising agents in regenerative therapy
for tissue replacement and repair. Efforts have been focused
on studying and applying regenerative therapy with MSC for
some diseases and respiratory pathologies, hematopoietic dis-
eases, and diabetes [4, 5] as well as other pathologies that
drastically affect the central nervous system (CNS), such as
traumatic injury, stroke, and spinal cord injury, among others
[6, 7].

This growing interest is based on the acquisition of knowl-
edge to understand the signals that govern the therapeutic and
regenerative function of stem cells, especially in tissues with-
out regenerative capacity [8]. The brain tissue is one of the
tissues that have this characteristic because it cannot regener-
ate its nerve cells; in this case, many studies have utilized
MSCs to protect and improve neuronal function [9], but ig-
noring other cells with important functions such as astrocytes.
Additionally, the mechanism bywhichMSCs exert their effect
is still not clear. It is even believed that the protective and
beneficial effects of MSCs are due to the presence of biomol-
ecules and soluble factors that these cells produce and release
into their extracellular environment [10–12].

Previous studies of the secretome of MSCs have revealed a
diversity of biomolecules with broad and essential functions
that may have important therapeutic implications in the clinic.
These biomolecules are anti-apoptotic factors, growth factors
such as vascular endothelial growth factor (VEGF), β fibro-
blast growth factor (FGF), platelet-derived growth factor
(PDGF) and insulin-like growth factor (IGF-1), sphingosine-
1-phosphate (S1P) [13], anti-inflammatory factors such as tu-
mor necrosis factor β1 (TGF-β1), interleukin (IL-10) [14],
and antimicrobial chemokines (the chemokine (C-X-C motif)
ligand (CXCL)10, CXCL8, CXCL1, CXCL6, chemokine (C-
C motif) ligand (CCL)20, and CCL5) [15], all being involved

in tissue repair and wound closure [16, 17]. Furthermore, it
has been found that VEGF, FGF, CCL2 (MCP1), the hepato-
cyte growth factor (HGF), and IGF-1 have protective func-
tions in different tissues. Specifically, the PDGF-BB, bFGF,
endothelial growth factor (EGF) [17, 18], brain-derived neu-
rotrophic factor (BDNF), nerve growth factor (NGF) [19–21],
IGF-1 [21], and glial-derived nerve growth factor (GDNF)
[19] have been reported to exert protective effect specifically
on the brain tissue [22, 23]. In this review, we present a general
and integrated overview of current knowledge about MSCs,
the mechanism of action of their bioactive molecules and/or
factors, and the recent progress in the investigation of
their potential regenerative and protective action on glial cells
such as astrocytes, as well as on different pathologies of the
CNS.

Diversity of MSC Sources: Greater
Opportunity in Cell Therapy

MSCs can be found in a variety of tissues in the body, and they
are the source of a natural response to traumatic onset and cell
tissue regeneration. It is important to separate the embryonic
stem cells (ESCs) from fetal stem cells (FSCs) and adult stem
cells (ASCs), since they differ in the degree of cellular fate
[24].

ESCs are pluripotent, while FSCs and ASCs are
multipotent. The pluripotent state implies that it can give rise
to more than one type of differentiated cell line and
multipotent cells have a restrictive potency due to the acquired
cell's ability to form a type of tissue depending on the germ
layer from which they originated [25, 26]. ESCs come from
lineages of blast cells and gastric (blastocyst, trophectoderm,
and internal cell mass) [27–30]. On the other hand, it was
initially thought that all the cell lineages of the ASCs came
from the mesoderm embryonic tissue [27], but later on, it was
observed that ASC cells differentiated into functional cells
that originated from the ectoderm and the endoderm [31].
This suggests that ASCs originally formed from the three
embryonic germ layers (mesoderm, ectoderm, and endo-
derm). ASCs have been found in almost all tissues, regardless
the tissue has a great regenerative capacity or not, denoting the
important role as progenitors [8].

In adult individuals, the stem cells are located in niches in
the perivascular zone of all organs which are microenviron-
ments that provide protection for different stimuli, like differ-
entiation and apoptosis, in addition to allowing them to main-
tain a balance between self-renewal and differentiation
[32–35]. Even if all niches share the same expression of key
molecules in different tissues, each niche has a molecular
identity associated with the tissue to which it is related. They
even share characteristics of pericytes in terms of phenotype,
marker expression, and differentiation capacity [32, 36]. This
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identity is mainly reflected in the presence of membrane re-
ceptors that are specific to each tissue for extracellular matrix
proteins and associated growth factors of the surrounding tis-
sues [32, 33, 37]. The common molecules between niches can
play diverse roles according to the embryonic origin and the
specific functions of the specific tissues [33].

According to Bieback et al. [38], MSCs comprise a diverse
population of multipotent cells capable of differentiating into
an osteogenic, adipogenic, or chondrogenic lineage that
makes them candidates to develop new therapeutic strategies
based on the cell types, such as the treatment of mesenchymal
tissue injury or support in the transplantation of hematopoietic
stem cells (HSCs) [39]. It has been known that MSCs are
traditionally obtained from bone marrow, but they have now
been isolated from adipose tissues through lipoaspirates in
higher volumes with respect to the one obtained from bone
marrow and umbilical cord blood (UCB) [40]. Among the
advantages of using MSCs are that they can be easily obtain-
ed, have rapid proliferation, and the ability to migrate to the
site of inflammation [41]. In addition, MSCs can be isolated,
cultured, and differentiated into different cell types. Some
time ago, the use of MSC was focused on differentiation and
transplant in different areas with some type of injury such as
bone, tendon, and heart, among others [42–44]. However, this
type of transplant treatments began to have adverse effects due
to the ability to promote tumor growth and metastasis, prob-
lems that continue to generate concerns in the field of regen-
erative medicine [45]. For example, it has been reported that
MSCs administered systemically can be recruited and migrat-
ed to tumors [46] and that can contribute to tumor pathogen-
esis through the support of tumor microenvironments [47]. It
has even been recently shown that mesenchymal cells increase
metastatic potential at various stages of growth progression of
the primary tumor [48].

Characteristics, Therapeutic Benefits,
and Controversies in the Use of Embryonic
Stem Cells

The discovery of embryonic mesenchymal stem cells as a tool
for regenerative tissue engineering was based on the study of
teratocarcinomas. Teratocarcinomas are tumors that present
differentiated tissues, sometimes totally differentiated (mainly
teeth or hair). Once isolated and cultured, these cells were
found to have blastocyst and pluripotent properties [49]. In
fact, this opens the investigation of ESC as a tool for
transgenesis and proliferation treatments. Depending on the
sou r c e o f ESCs , t h ey wou ld have d i f f e r en t
molecular characteristics . During in vitro fertilization proce-
dures, ESC can be obtained from the blastocyst period at the
time of pre-implantation, until the end of the gastrulation pe-
riod [50]. As the first cells of the embryo break down, they

have a greater commitment and their power varieties depend
on the location within the embryo.

Besides the controversy due to the ethics involved in work-
ing with human embryos [51, 52], the in vitro issue of low
embryo generation rate [53], and differentiation to obtain a
heterogeneous population [53], ESCs are currently being eval-
uated for several purposes. These include development of a
population of cardiac progenitor cells [54, 55] and sub-retinal
transplantation of retinal pigment epithelium (EPI) derived
from hESC in patients with macular dystrophy of stargardt
and age-related macular degeneration [56, 57]. As reported
with other stem cells, there are reports on the generation of
tumors in transplants of ESCs, which is an obstacle for the
clinical use of these cells [49, 51, 52]. It is considered that this
negative outcome is related to both the pluripotency of ESCs
and the fact that the blastocyst cytoplasm expresses many
proteins promoting cell division and proliferation. Another
difficulty to work with ESCs is that the transplanted cells do
not function and integrate properly in the organs, thereby in-
ducing immune rejection [51, 58]. These limitations have
prevented the use of human embryonic cell lines and imple-
mentation of their therapeutic potential [53].

Genetic Advances for the Use of MSCs
as Therapeutic Alternatives in Various
Pathologies: Induced Pluripotent Stem Cells

Another type of stem cells that has been studied for use in cell
therapy are the induced pluripotent stem cells (IPSCs). These
cells are derived from adult somatic stem cells by a pluripotent
state transformation similar to an embryo [49, 59]. This
reprogramming is done by introducing specific transcription
factors that are known to increase pluripotency (sex determin-
ing region Y (SRY)-box 2 (Sox2), octamer-binding transcrip-
tion factor 4 (Oct4), Kruppel-like factor 4 (Klf4), and c-Myc)
[51, 60, 61] and has appeared as a key advance in cell therapy
due to its ability to differentiate into cells of any of the three
germ layers and the non-immune rejection of cells in trans-
plant therapies through the development of patient-specific
cell therapy protocols [25, 62]. Another advantage of plurip-
otent cells is that they are not subject to special regulation like
MSCs, but they have a high similarity at the molecular and
functional level with these embryonic cells [25, 63]. However,
among these similarities with ESCs are the problems associ-
ated with the capacity of pluripotency, as in some cases the
formation of teratomas by the uncontrolled proliferation [62,
64, 65]. Indeed, they do not have a uniform characteristic
related to the gradient of the induced pluripotency factors
and genetic heterogeneity of the donor [49].

IPSCs are cells that go through a genetic modification in the
conversion of pluripotency, related to the appearance of muta-
tions or reactivation of the embryonic gene program and have a

6904 Mol Neurobiol (2019) 56:6902–6927



residual epigenetic memory related to the donor’s imprint, age,
immunogenic specificity, and somatic as well as variations re-
lated particularly with the extraction tissue [62, 66–68].
Although pluripotent stem cells (PSCs) offer the possibility of
studying a model based on human cells, more importantly they
allow the study of the mechanisms of the disease in a cell that
has a relevant genetic background when extracting the somatic
cells of patients with diseases of unknown molecular origin or
unknown pathological pathways [52, 62, 69]. For example,
some research has focused on the evaluation of genetic factors
and the epigenetic changes that occur during the
reprogramming of IPSC to improve the effectiveness of cell
replacement therapies for the treatment of neurodegenerative
diseases such as Alzheimer’s disease (AD), Huntington’s dis-
ease (HD), and Parkinson’s disease (PD) [70, 71].

Interestingly, it has been found that human IPSCs use the
same transcription network to generate neuroepithelial and
functional neuronal types in the same evolutionary course that
ESCs do but with reduced efficacy and some variability [72].
On the other hand, it has been found that the neurospheres
derived from the IPSC of humans promote motor functional
recovery in mice with spinal cord injury [73] and that a model-
ing of human cortical development in vitro using this type of
cells has facilitated the study of the development of the human
brain as well as disorders of the human cerebral cortex [74].
This contributes to the study of the early stages of a human
neurodevelopmental disease and provides a cellular tool in the
detection of drugs and possible applications for diagnostic
purposes and personalized treatment [75]. The progress in
the study of IPSCs has allowed advances in the search of
therapeutic alternatives or more precise and opportune diag-
nosis. Other stem cells that have also been studied are the fetal
and adult stem cells. These stem cells are also considered
multipotent whose characteristics are described in the follow-
ing section.

Characteristics and Therapeutic Benefits
of Fetal and Adult Stem Cells

FSCs originate from the trophectoderm and partly from the
mesoderm. The usual fetal tissues used are the Wharton gelatin
stem cells (WJSCs) of the placenta, the perivascular umbilical
cord stem cells (UCPVCs), and the amniotic fluid stem cells
(AFSCs). UCPVCs are cells extracted from the inner layer of
the umbilical cord. Originally, they form the extra-embryonic
allantois layer that differs from the mesoderm. In adults, MSCs
can be isolated from a large number of sources such as bone
marrow, spleen, muscle cells, pancreas, and dermis [76–78].

The MSCs derived from the bone marrow (BM-MSC) and
the MSCs derived from the adipose tissue (A-MSC) are the
most studied stem cells, and they can also be found in dental
plug stem cells (DPSCs), HSC, and MSC derived from

peripheral blood. There is little or no difference between
BM-MSC and A-MSC niches [79, 80]. The bone marrow
niche comprises osteoblasts, HSCs, ESC, and their progeny
[34], and they clearly differ from the niches of stem cells of
hair follicles and teeth [33]. The expression of proteins and
molecules of A-MSC has been described as similar with BM-
MSC, but it has been observed to have more similarities with
WJSCs of placental tissue [81, 82]. From the origin of the
endoderm and the ectoderm, some of the stem cells are used
for research and therapeutic processes. Among them, we can
highlight the epithelial stem cells (EpSCs) and the neural stem
cells (NSCs) of ectoderm origin and the HSCs [83] of endo-
derm origin. In the case of EpSCs, the vast majority of studies
refer to what are the intrinsic molecular mechanisms to main-
tain the state of pluripotency, niche-dependent differentiation,
and induction/maintenance of the resting state [84–87]. NSCs
are cells located in the subventricular zone and brain regions
of the hippocampus of the mammalian brain [88].

Knowledge of the existence of ASC and their various usage
have developed a variety of treatment possibilities, but one of
the biggest problems experienced is the difficulty of obtaining
any of the tissues with stem cells because they all involve
invasive procedures for extraction [89]. Also, not all the ex-
traction provides the volume needed to work. For example,
extracting MSCs from the bone marrow is not profitable due
to the low percentage obtained from MSCs (0.001–0.01%),
and this has limited its application and research [33, 90]. On
the other hand, adipose tissue is abundant and the frequency of
MSCs in adipose tissue is 100 times higher than that found in
the bone marrow [80]. Recent studies have shown that MSCs
isolated from adipose tissue are more abundant and have a
greater viability in the culture (98–100% of the cells of weaves
are viable after the extraction) [90–92]. Moreover, adipose-
derived MSCs are isolated easily and safely [91, 92] via
obtaining up to 500 ml of adipose mass per patient. Other
adipose MSCs are obtained in smaller quantities, their extrac-
tion volume is less than 10% of the original tissue, and their
therapeutic use will depend on the intrinsic individual charac-
teristics of the cells, that is to say, difficulty of isolation, cel-
lular power, crop management, immune response to trans-
plants, and tumor induction capacity, among others [25].

Characterization and Composition Secretome
of MSCs

Initially, self-regeneration and tissue replacement capacity by
MSCs was the focus of action in regenerative medicine. The
ability to generate differentiated cells of a wounded tissue was
the main research interest focused on the use of MSCs. In this
regard, one of the main lines of study of the MSCs is based on
transplants and in differentiation studies of grafts of these cells
in co-cultures in vitro [27, 35, 93–95]. This line of research
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has given promising results in most cases, differentiation
in vivo, but is uncommon partly because the lifetime of the
MSCs in the transplanted tissue is between 48 h and 3 months
[96, 97]. In addition, the transplanted cells cannot function
normally in the organs, because immune rejection may occur
[51, 58] or they may promote tumor growth and metastasis
[45, 98, 99].

Recently, another research course has emerged in which the
type of rescue and repair of MSCs is given by the paracrine
activity of secreted factors (growth factors, cytokines, and
hormones), cell-to-cell interactions, and the release of extra-
cellular vesicles that include proteins, mRNA, and microRNA
[25, 27, 100]. In vivo, the MSCs present a stage of pre-
differentiation in which they begin to express molecules of
target tissue that is also determined by the microenvironment
where the MSCs will be transplanted. In the target organ, the
MSCs begin to respond to the environmental signals that im-
pose a regulatory action [101] that in most cases is related to
specific tissue pathology, generating an immune/
inflammatory suppression most likely by paracrine activity
[96]. This main action of MSCs to the injury or response to
the disease is the secretion of different functional biomole-
cules, molecules of paracrine secretion, and molecules stored
in extracellular vesicles that generate important actions in ho-
meostasis, immune response, development, angiogenesis, tro-
phic action, anti-inflammatory action, pro-regenerative action,
proteolysis, adhesion, and organization of the extracellular
matrix [32, 34, 102–104].

The MSC secretome dynamically changes its composition
depending on the stimuli and microenvironment. Therefore,
depending on the environment or the pathology they face,
once they are in an affected tissue, they activate different path-
ways to generate a particular molecular expression response
[103]. Generally, theMSC secretome has also been reported in
regulating inflammatory responses. The modulation of the
immune system also has regenerative effects promoting pro-
liferation and inhibiting the apoptosis of damaged target cells,
among other benefits that can serve as a therapeutic alternative
in various diseases of both the CNS and other tissues [99,
105]. As mentioned, these effects may be directly or indirectly
related to the presence of bioactive molecules, including pro-
teins, mRNA and miRNAs, cytokines, chemokines, growth
factors, hormones, extracellular matrix proteins, matrix re-
modeling enzymes, and vesicle proteins produced by the cell
comprise the secretome [19, 103]. These molecules can be
involved in the communication from one cell to another that
leads to the exchange of genetic information and
reprogramming of recipient cells or even the presence, for
example, of miRNA-133b involved in the recovery of brain
tissue [106–108]. In addition to the active molecules and
miRNAs that have been reported in the secretome of MSCs,
it has been found that these cells also release extracellular
vesicles, known as exosomes, that contain molecules and

essential factors to maintain intracellular signaling and com-
munication. The main characteristics of exosomes and ad-
vances as a possible therapeutic alternative are presented in
the following sections.

Exosomes of MSCs: a New Cell-Free Therapeutic
Option

The study of exosomes as signal transmitters is recent and has
gained ascending attention in current days. The exosomes,
together with microsomes, constitute the extracellular vesicles
that have lower immunogenicity, absence of cytotoxicity, and
non-mutagenic characteristics [109]. In addition, they have a
small size with a diameter of 40–100 nm [98] and can be
permeable to biological barriers. It is known that the mole-
cules stored in the exosome are defined by different mem-
brane protein complexes, of which the main protagonists are
ESCRT-0, ESCRT-III associated with p53, and the
ubiquitinated major histocompatibility complex [110].

Exosomes are also known as molecular transporters and
show a superior transport system that allows the supply of
small proteins and different RNA (mRNA, miRNA, tRNA,
and other non-coding RNAs) that intervene in the immuno-
regulatory response of MSCs [111–113]. In addition, the use
of exosomes has a safety profile superior to the use of cells
because they are structures that can store and transport mole-
cules safely without losing their function and conserving its
properties and cytoprotective benefits with the activation of
pathways where they are really necessary [98].

Exosomes have been reported in different types of cells or
substrates, among which are cancer cells [114], serum of can-
cer patients [115], and serous ovarian carcinoma [116] as well
as in the MSCs derived from adipose tissue (A-MSC) and
bone marrow (BM-MSC) [98, 117, 118]. Other investigations
report that MSC exosomes are mediators during inflammation
by releasing anti-inflammatory cytokines and influencing the
apoptosis of activated T cells [110, 119]. Also, MSCs can
participate in the healing of cutaneous wounds by the action
of Wnt family member 4 (Wnt4) administered in extracellular
vesicles [120]. On the other hand, it has been shown that
extracellular vesicles obtained from human umbilical cord
Wharton’s jelly MSCs (hWJMSCs) reduced the growth of
T24 bladder carcinoma cells in vitro and in vivo [121], re-
duced apoptosis induced by liver disease [122], decreased
heart attack induced by cardiovascular diseases [123], and
have beneficial effects in pulmonary diseases [124]. In this
regard, Harrell et al. found that exosomes derived from
MSCs were as efficient as transplanted cells in limiting the
extent of injury and ocular inflammation [125]. In this regard,
other studies have shown that exosomes derived from MSCs
have similar functions like repairing tissue damage, suppress-
ing inflammatory responses, and modulating the immune sys-
tem without the risks of aneuploidy or immune rejection after
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allogeneic administration [126]. However, the mechanisms by
which protection is given are not yet fully known and some
results remain controversial.

Alternatively, studies of the effects of extracellular vesicles
on pathologies of the CNS have been also advanced. Recently,
Zhang et al. demonstrated for the first time that exosomes
fromMSCs can improve brain’s functional recovery, promote
angiogenesis and neurogenesis, and decrease neuroinflamma-
tion in rats subject to traumatic brain injury (TBI) [127]. The
positive effects of exosome have been attributed to the action
of proteins, lipids, and RNA present in these vesicles and that
may have a specific therapeutic role [128]. In regard to these
findings, the evaluation of the effect of nanovesicles and
exosomes derived from MSC has greatly advanced and ap-
pears as a promising future therapeutic alternative for brain
pathologies. For example, exosomes of BM-MSCs that are
transferred to neurons and astrocytes have not only dimin-
ished cognitive deterioration induced by diabetes [129] but
when administered intravenously also targeted M2-type mac-
rophages in spinal cord injury [130]. On top of that, it has been
reported that stem cells derived from multipotent mesenchy-
mal stromal cells overexpress different microRNAs currently
investigated for the treatment of brain pathologies. For exam-
ple, the microRNA 133b has shown to increase neuronal plas-
ticity and to improve neurological function in a rat model of
stroke [131]. Another miR, the miR-26a, present in exosomes,
has also been related to axonal regeneration, neurogenesis,
synaptic development and plasticity, synaptic transmission,
and maintaining neuronal morphology [132]. Similarly,
nanovesicles derived from adult stem cells reduce the move-
ment of T lymphocytes and improve chronic experimental
autoimmune encephalomyelitis [133].

According to Zhang et al. [127], functional recovery has
been demonstrated, possibly promoting angiogenesis that al-
lows renewal of the endogenous endothelium as well as
neurogenesis after the use of exosomes derived from MSCs.
The authors report that together these effects significantly im-
prove spatial learning and motor recovery in rats with exper-
imental intracerebral hemorrhage [134]. Considering the ben-
efits of exosomes for the treatment of different pathologies,
nowadays, different types of culture have been established
that allow obtaining exosomes with more protective effects.
For example, a previous study [135] determined that 2D and
3D cultures of BM-MSCs allow obtaining exosomes for the
treatment of TBI. However, the exosomes obtained in 3D
scaffolds gave better results in spatial learning than exosomes
grown in 2D and in general terms the exosomes significantly
improved functional recovery in rats after a TBI promoting
angiogenesis and endogenous neurogenesis and in this partic-
ular case also reduced neuroinflammation [135]. It seems to
expand the study of MSCs exosomes and the analysis of the
possible mechanism of action on the pathologies is considered
as a primary objective in the search for effective therapeutic

alternatives, low demanding and fast-acting for the treatment
of CNS diseases or else at least provide an approximation
preventing progression of the injuries. Some advances in this
area are presented below, focused in the CNS and the effect of
biomolecules in the protection and recovery of the different
cells that form the brain tissue.

Action of the Secretome of Mesenchymal Stem Cells
on Pathologies

Nowadays, it is a well-known fact that the paracrine action of
MSCs is based on the secretion of trophic factors and cytokines
[136]. Therefore, proteomic studies of MSCs have been devel-
oped, mainly derived from bone marrow, adipose tissue, fetal
and embryonic, as well as their secretome or paracrine factors,
in order to detect prospective biomarkers, identify molecules in
response to the injury, select objectives for the treatment, and
study cell signaling [103, 137, 138]. With the accumulating
evidence from these studies on the effect of paracrine factors
in different tissues and the constant search for therapeutic strat-
egies, effective treatments could be developed for different dis-
eases, including CNS ailments [139–142] (Fig. 1).

An explicit example is that for some time the conditioned
medium of MSC (CM-MSCs) derived from different sources
has been evaluated in cardiac, renal, bone regeneration, or
inflammatory processes, among others [143]. Particularly,
for cardiac tissue as reviewed by Gnecchi et al. [144], the
mesenchymal ones that are grafted release a wide range of
soluble factors that can be used to prevent and reverse the
remodeling in the ventricle with ischemic injury [145]. It is
possible that the protective effect is given by immunomodu-
lators and antioxidants, the presence of extracellular superox-
ide dismutase (SOD3) [146], the increase of anti-
inflammatory proteins such as the tumor necrosis factor-
inducible gene 6 protein (TSG-6) [147, 148], or due to the
effect of exosomes derived from MSCs that increased the
levels of ATP, NADH, AKT, and phosphorylated GSK3β, in
addition to reducing oxidative stress [149].

At the muscular level, CM-MSCs can reduce apoptosis and
fibrosis intramuscularly [102] and the factors present in the
CM-MSCs may favor the treatment of immune diseases, the
rejection of transplants [150], and in the treatment of acute
kidney injury through an anti-apoptotic protective effect
[151, 152]. To this long list of beneficial effects of the trophic
factors produced and secreted by MSCs, they help to improve
the proliferation of endothelial cells and angiogenesis in a
model of ischemia of the hind limbs in rats [153], accelerate
the formation of bony scars [154–156], recovery of rheuma-
toid arthritis [157], regeneration of jaws in rabbits [18, 158],
and they have a therapeutic effect in the treatment of diabetes
mellitus [159], among other diseases [160]. Indeed, these se-
creted factors from MSCs decrease pro-apoptotic markers
(caspase-3, α-smooth muscle actin (α-SMA), and
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proliferating cell nuclear antigen (PCNA)) in rats subjected to
unilateral ureteral obstruction [161]. In addition, it has been
demonstrated using in vivo paracrine models that exosomes
decrease apoptosis and the formation of pulmonary fibrosis
mediated by an anti-inflammatory mechanism provided by the
MSCs [162] and with similar results [163] reported in the rats
with periodontal defects, a periodontal tissue regeneration
linked with cytokines present in the CM-MSCs.

The benefits of the use of the secretome in various pathol-
ogies that affect humans are widely reported. A significant
number of studies support the protective and beneficial effect
of the secretome on brain tissue, especially in pathologies that
are currently considered a public health problem in different
countries such as AD. A detail of the molecules and factors
with beneficial effects is discussed below in the context of
different animal models of pathologies of the CNS.

The Secretome of MSCs as a Therapeutic
Alternative for CNS Pathologies

The brain tissue is formed by complex and integrated relation-
ships between different types of cells. The neurons are

responsible for neurotransmission, and the glia, mainly
astroglia, function as the cerebral administration system
playing a leading role in neuronal survival by maintaining
cerebral homeostasis, controlling secreted trophic factors,
buffering extracellular K+ concentrations, recycling gluta-
mate, metabolizing glucose into lactate, and forming the
blood-brain barrier. The physiology of these cell types is
strongly altered during cerebral pathologies, causing the loss
of their functions and the protection they provide to the tissue.
Brain pathologies have common characteristics of cell dam-
age. For example, they increase the production and accumu-
lation of reactive oxygen species (ROS) and reactive nitrogen
species (RNS), denaturation, and protein aggregation, besides
secreting apoptotic factors, generally related to the mitochon-
drial malfunction and alterations in the metabolism.

Because of the sequelae and cell death left by physiological
changes at the cellular level, cerebral pathologies have had an
impact on the quality of life of the world population, and given
its complexity, it has been difficult to establish effective ther-
apies or treatments for some pathologies that prevent the prog-
ress of the injury with cognitive and motor sequelae [6, 7]. In
this regard, CM-MSCs have also been evaluated in the search
for protective or restorative agents in different cerebral

Fig. 1 Effects of the conditioned medium of mesenchymal stem cells
(MSCs) in brain cells. The conditioned medium (CM) of MSC can be
obtained from adipose tissue (CM-A-MSC), bone marrow (CM-BM-
MSC), dental pulp (CM-hDPSC), and umbilical cord blood (CM-
HUCPVC). It contains bioactive molecules and/or trophic factors such
as VEGF-FGF-HGF-EGF with anti-apoptotic properties, decreases neu-
rodegeneration, increases the number of neurites and angiogenesis,

promotes the recovery of the spinal cord, increases the levels of ATP-
NADH, and activates different survival pathways at the neuronal level,
such as phosphorylation of Akt, Jak/STAT3. The conditioned medium
also decreases the activation of microglia and promotes the
oligodendrogenesis and functional remyelination, making it as suitable
therapeutic strategy to counteract different pathologies at the CNS
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pathologies such as TBI, neurodegenerative diseases, spinal
cord injury, ischemia, and stroke (Table 3).

Traumatic Brain Injury

TBI is often caused by accidents [182, 183]. It is known as an
impairment of brain function caused by stroke, laceration, or
rapid and strong movement of the brain inside the skull, pro-
ducing neurological damage [184]. The initial manifestations
of TBI include an altered level of consciousness, convulsions,
coma, and confusion. The final results of the injury are disor-
ders affecting memory, attention, language, reading, and writ-
ing as well as spatial orientation tasks [185]. There are differ-
ent physiopathological phases that compromise changes in
different types of brain cells. The first phase includes mechan-
ical damage causing the rupture of the blood-brain barrier and
a diffused axonal injury [186], and the second phase is a cas-
cade of events caused by mitochondrial breakdown and free
radical release [187–189]. In addition, the functions of neu-
rons are affected by the loss of other brain cells such as astro-
cytes [190, 191].

The complexity of TBI has sought different therapeutic
alternatives for the treatment or prevention of progression of
injury. One of these therapeutic alternatives is the use of
MSCs from different sources. To mention, studies have re-
vealed that endothelial progenitor cells migrate from the bone
marrow into the bloodstream in response to injury or inflam-
mation [192, 193]. In other studies, it was found that medul-
lary stromal cells applied intravenously [194] and the trans-
plantation of fetal neural stem cells [195, 196] help in improv-
ing the functional cognitive outcome after acute brain injury.
Recently, Otsuka et al. [197] reported that transplantation of
MSCs derived from human cranial bone, cultured under mi-
crogravity conditions, had exceptional neuroprotective effects
in mice with TBI.

A topic that is often debated nowadays is the nature of
metabolites secreted by MSCs that can be used for the treat-
ment of TBI. The BM-MSCs have been widely studied and
the results showed beneficial effects for various brain diseases
[15, 198]. For example, intravenous injection of BM-MSCs
secretome reduced neuronal loss and apoptosis, promoted the
production of VEGF, and induced functional improvements in
a rat model of TBI [164]. More importantly, they found that
the factors secreted by BM-MSCs modulated the inflammato-
ry response by decreasing the profile of cytokines expression
on the brain tissue. Also, in a model of experimental TBI, the
secretome from BM-MSCs promoted the survival and prolif-
eration of neural stem cells and the subsequent repair of the
injured tissue [9] whereby suggesting that they could be a
promising strategy for recovery from TBI.

It is noteworthy that not only the factors of the BM-MSCs
are related to the protection against TBI, but also other CM-

MSCs have shown encouraging beneficial effects in this neu-
rological condition. Firstly, several studies have reported the
presence of bioactive factors and cytokines with powerful
long-lasting antinociceptive effect on neuropathic pain devel-
oped after a nerve injury [199] as well as other compounds
such as HGF and VEGF have been reported to be present in
the CM-MSCs. Nevertheless, when pre-conditioning of
MSCs with hypoxia was performed before the isolation of
exosomes, the rats with TBI treated with these specific
secretomes showed better results in the motor and cognitive
functional tests and enhanced neurogenesis and less brain
damage after injury [167]. The potential benefits of using
CM-MSCs for treating neurological disorders have encour-
aged the use of the new genetics technologies to design
MSCs with enhanced tropism and paracrine secretion of cy-
tokines and growth factors for localization and recovery of
TBI, including the use of the chemokine receptor interaction
involving the CXC4 (CXCR4)-SDF1α (factor 1α derived
from stromal cells) factors [120].

Several studies with different experimental approaches, but
related to the TBI, have also shown an effect of MSC on
restoration of tissue structure and function. One of these cases
is the crush injury of the optic nerve. In this study, they
showed that MSC therapy was associated with an increase in
the expression of FGF-2 in the ganglion cell layer of the retina,
suggesting a beneficial result mediated by trophic factors from
mesenchymal stem cells [168]. Other studies also showed that
the CM-MSC is involved in the protection of neurons against
glutamate excitotoxicity as the reduction of NMDA-triggered
calcium responses and surface GluR1, and these results sug-
gest that the CM-MSC involves reduced activity of the
NMDAR and GluR1-containing AMPAR and TNF-
mediated neuroprotection [169].

Neurodegenerative Diseases

Neurodegenerative diseases, such as AD, PD, and HD, are
another type of brain pathologies that have higher incidence
in the world’s population [200, 201] and for which the CM-
MSCs have also been evaluated as alternative for treatment
[139, 202]. These therapies will take advantage of the innate
trophic support of the MSCs by using genetically engineered
MSCs as delivery vehicles of growth factors, such as BDNF
andGDNF, to support injured neurons [142]. Clinical trials for
the administration of MSCs and application of their secretome
in the CNS to treat different nerve pathologies are currently
underway. In search for alternative treatments for neurodegen-
erative diseases, the differentiation capacity of MSCs into
functional dopaminergic neurons [203] and also the anti-
apoptotic effect on dopaminergic neurons of factors secreted
by MSCs has been evaluated [170]. However, although the
mechanisms of action of MSCs factors are not clear, recent
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studies support the hypothesis that the therapeutic effect of
MSCs is mediated by the receptors MAPK-1 and PDGFRB
[204]. There is evidence compelling that monoaminergic fi-
bers are affected in PD [205, 206]. Interestingly, BM-MSCs
have shown to protect both catecholaminergic and serotoner-
gic neuronal perikarya structure and transporter function from
oxidative stress by the secretion of GDNF [207]. New per-
spectives for therapeutic strategies have led to carrying out
tests with genetic modifications on MSCs in such a way that
they overexpressed GDNF, finding protection and budding of
the dopaminergic terminals induced by secreted GDNF [208].
With all this evidence, it is reasonable to postulate that MSC
therapy can reduce the risk of PD, based on the fact that MSCs
can act as a ROS detoxification system and as a provider of
neurotrophic factors as reported previously [209]. Despite this
progress, further investigation and broader approaches to in-
vestigate the scientific scope of these potential therapeutic
alternatives are still needed.

Another neurodegenerative pathology that has attracted
great interest in the search for therapeutic alternatives is the
multiple sclerosis. Also, in this condition, BM-MSCs and the
CM-MSC have been evaluated for therapy. In a first study by
Dahbour et al. (2017), it was found that there is a correlation
between a lower number of lesions and a higher content of
molecules such as interleukin-6 (IL-6), interleukin-8 (IL-8),
and VEGF present in the CM-MSCs at the beginning of the
study [171]. This correlation may explain the magnitude of
improvement in the state of disability [171]. Alternatively, it
was reported in in vivo murine demyelinating model that in-
traventricular injections of MSCs provide paracrine effects on
the oligodendrogenesis of the subventricular zone, suggesting
that MSC-secreted factors may be an effective method to pro-
mote oligodendrogenesis and functional remyelination [210].
To date, phases 1, 2, and 2a pre-clinical trials conducted to
assess the safety and efficacy ofMSCs in humans showed that
an intravenous and/or intramuscular injection of MSC and
neurotrophic factors have synergistic clinical benefits in
amyotrophic lateral sclerosis [211, 212].

AD has a high prevalence in the elderly [213, 214] and
abundant research have been done about its pathophysiology
and possible treatments including the use of factors secreted
by the MSC of the human umbilical cord (hUCB-MSC), such
as the GDF-15 factor, that promotes endogenous neurogenesis
of the adult hippocampus and synaptic activity in a model of
AD [215]. In addition, the use of these cells reduced β-
amyloid (Aβx-42) plaques in the hippocampus and other re-
gions. These data suggest that sICAM-1 derived from hUCB-
MSC decreases Aβ plaques by inducing NEP expression in
microglia via the sICAM-1/LFA-1 signaling pathway [216].
At the same time, clinical trials have shown that the cerebral
stereotactic injection of hUCB-MSC in patients with dementia
due to mild to moderate AD was feasible, safe, and well tol-
erated [217]; however, still more studies are needed to

evaluate their efficacy to be used in the treatment of AD.
Finally, a previous study [218] showed that several transplants
of MSCs in the striatal zone regulated factors such as FGF-2
and significantly reduced the number of degenerating neurons
in the striatum. This effect was probably mediated by factors
secreted by MSCs since these were visible up to 60 days after
transplantation that may be involved in the reduction in brain
damage under neurodegenerative conditions [218].

Spinal Cord Injury

In comparison to other pathologies, the effect of CM-MSCs
on spinal cord injury (SCI) showed greater progress in the
discovery of possible mechanisms of neuroprotection. In this
regard, studies at the neuronal level in an excitotoxicity model
revealed that the expression of GAP-43, an essential protein
for axonal and dendritic growth, increased considerably in
parallel to an increase in the levels of ATP, NAD(+), and
NADH after the treatment of neurons with conditioned medi-
um mesenchymal cells derived from adipose tissues (CM-A-
MSCs). These results can be relevant since excitotoxicity oc-
curs in many neurological conditions including after SCI or
TBI.

Previous studies have shown that trophic factors and bio-
active molecules present in the CM-MSCs are regulating sur-
vival signaling pathways. A first study [172] pointed out that
BDNF and GDNF found in the CM-BM-MSCs are involved
in the growth of neurons of the spinal cord and that the pro-
tection exercised by BDNF is mediated in part by the activa-
tion of Akt. These findings correlate with studies in cerebellar
neurons where they show that BM-MSCs are able to protect
cerebellar neurons from cultured rodents by modulating the
phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK path-
ways, and the antioxidant effect of superoxide dismutase 3,
a protein synthesized and secreted by the BM-MSCs [146].
Similar results in axonal growth of neurons mediated by
BDNF from hUCB-MSCs were reported previously [173].

Another signaling mechanism of action of CM-MSCs is
the activation of the Jak/STAT3 pathway to maintain the
well-being of the embryonic dorsal root ganglia [174]. As
previously reported [174], neurogenesis and neurite growth
are not only mediated by BDNF, but also influenced by IL-6
and the leukemia inhibitory factor (LIF) produced by PSC
[174]. Besides, another study showed that intrathecal infusion
of exosomes derived from mesenchymal stem cells of the
human umbilical cord (UC-MSC) suppressed nerve ligation-
induced upregulation of c-Fos, CNPase, GFAP, and Iba1 and
also reduced the level of TNF-α and IL-1β in male rats with
pain induced by nerve lesions [165]. The above suggests that
this signaling pathway stimulated by the CM-MSCs can be
targeted by alternative therapies against peripheral nerve
injury.
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Interestingly, the characterization of the CM-BM-MSCs
revealed a series of molecules such as cytokines and IGF-1,
HGF, VEGF, and TGF-β1 that contribute to neuronal survival
and the growth of neurites in vitro and that can probably be
used for the treatment of SCI, as previously demonstrated in
rats [219]. Impressively, current pieces of evidence from stud-
ies using secretomes from A-MSC, BM-MSC, and
HUCPVCs highlight the fact that these cells induce the same
degree of differentiation of human neural progenitor cells and
neurite growth in dorsal root ganglion explants [220].

These new perspectives in regenerative medicine research
have encouraged the testing of new forms of application of
trophic factors from MSCs. One of the new approaches in-
cludes the intrathecal administration of trophic factors secret-
ed by mesenchymal stromal cells. The results showed that
these factors improved the functional recovery and decreased
the expression of IL-2, IL-6, and TNF-α in a rat model of SCI
[221]. On top of that, recent research shows that a new 3D
biomimetic hydrogel designed to administer the factors secret-
ed by the MSCs significantly immunomodulated the proin-
flammatory environment in an SCI mouse model, increasing
the M2 macrophage population and promoting a pro-
regenerative environment in situ [222].

Ischemia and Stroke

Ischemia and stroke are another type of pathologies that are
often affecting the well-being of humans as TBI affects the
family, social, and professional life of patients who suffer from
cognitive sequelae and other long-term negative effects after
the traumatic event [223, 224]. In vivo models of cerebral
ischemia induced by hypoxia and ischemic stroke models
have been used to evaluate the effects of the trophic factors
from BM-MSCs and A-MSCs, finding for both cases that
these factors have a neuroprotective effect in stroke/induced
injury [146, 175].

Similar results were found when using MSCs, which have
shown in organotypic cortical brain slices subject to oxygen-
glucose deprivation to release human amniotic factors that
may protect the brain from acute injury. Surprisingly, in this
study, they also found that fractions rich in metabolites of less
than 700 kDa were protective, but this fraction did not contain
protein or ribonucleic molecules. Interestingly, another study
reported equal effectiveness of the CM-BM-MSCs subjected
to ischemia and those under normoxygenic conditions. Both
cells effectively increased neuronal connection and survival in
mixed glia/neuron cultures. Besides, an intravenous infusion
in in vivo models of stroke significantly improved functional
recovery, increased neurogenesis, and attenuated the infiltra-
tion of microglia/macrophages in the brains, revealing a ther-
apeutic potential of the factors present in CM-BM-MSCs
[175]. All these studies have reported an improvement in

functional recovery in different models in vivo with ischemic
stroke, opening a plethora of possibilities and new alternatives
for the treatment of this type of pathologies.

About the mechanism of action by which the CM-MSCs is
exerting its neuroprotective effects in stroke, BDNF and HGF
have been reported to have protective effects on damaged
neonatal cortical neurons in a model of oxygen and glucose
deprivation (a cellular model of stroke-related conditions),
decreasing the signs of apoptosis/necrosis [176]. However,
the presence of these two factors does not discard the possi-
bility that there are other paracrine molecules with neurotroph-
ic potential contributing to these effects. In this regard, the
secretome analysis of MSC derived from the limbus (L-
MSCs) showed that molecules including the human growth
factor, cytokines, and other factors such as VEGF, VEGFR3,
BDNF, IGF-2, and HGF not only stimulate the growth of
neurites, but also protect the hypoxic neurons in vitro and
in vivo in models of focal cerebral ischemia in rats [177].

To date, several studies support the presence of BDNF
secreted by transplanted MSCs. A previous study showed
how BDNF was one of the critical paracrine factors that play
a fundamental role in the attenuation of severe brain lesions
induced by intraventricular hemorrhage in newborn rats.
BDNF knockdown worsens posthemorrhagic hydrocephalus,
behavioral performance, astrogliosis, TUNEL+ cells, ED-1+
cells, and inflammatory cytokines in severe IVH-induced
brain injury [178, 179]. A second study showed that treatment
with UC-MSCs attenuated the cerebral reactive gliosis and
hypomyelination and elevated BDNF and HGF levels in the
cerebrospinal fluid, serum, and brain tissue of a mouse model
of neonatal IVH [180]. Ultimately, it is important to note that
paracrine factors secreted by MSCs protect neurons from ap-
optotic cell death in the cerebral ischemia model by glucose
and oxygen deprivation by activating and increasing the phos-
phorylation of STAT3 and Akt in neuronal cultures after treat-
ment with CM-MSCs [181].

Effect of the Secretome of Mesenchymal Cells Derived
from Adipose Tissue in Brain Pathologies

Adipose tissue is a vascularized connective tissue with impor-
tant functions in protection, as an insulator and energy reser-
voir, and it can even act as an endocrine organ. When it is
enzymatically disintegrated, the adipose tissue can produce A-
MSCs [225]. Secretory studies have revealed that A-MSCs
release molecules that can mediate processes of repair in dif-
ferent tissues including the nervous system (Table 1).
Although the proinflammatory cytokines granulocyte-
macrophage colony-stimulating factor (GM-CSF), IL-6, IL-
7, IL-8, IL-11, and TNF-α play a fundamental role in
attracting phagocytic cells for the cleaning of waste in the
injured area [17], it has been reported that trophic factors such
as VEGF [241], HGF, TGF-β, FGF-2 [242–244], and other
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immunosuppressive molecules that contribute to controlling
inflammation such as prostaglandin E2 (PGE2) [245, 246] and
IL-10 [247], are essential for wound healing. In addition, ex-
tracellular matrix molecules, hormones, and some lipid medi-
ators have been also reported to have beneficial neuroprotec-
tive effects [244, 248]. A comparative study of the effects of
CM-A-MSCs and CM-HUCPVC indicated that the latter pro-
moted the strongest effect on neuronal survival [82]. The tro-
phic factors present in the CM of these two cell types were
bFGF, NGF, SCF, HGF, and VEGF with only bFGF absent in
the CM-A-MSCs and a small expression of NGF in CM-
HUCPVC [82]. In another study, BDNF and adipokines have
been reported inside A-MSC secretome [246]. Furthermore,
some studies have concluded that A-MSCs show similar cy-
tokine secretory abilities than BM-MSCs [17]. On the other
hand, there is evidence indicating that CM-A-MSC-derived

factors are responsible for protecting neurons against
excitotoxicity induced by increased expression of GAP-43,
inhibition of neuronal damage and apoptosis, and stimulation
of the regeneration and repair of nerves and the tissue bioen-
ergetics. These effects have been suggested to be exerted
through increasing the levels of high energy molecules and
cellular metabolism [20]. Currently, several studies evaluated
the effect of CM-A-MSCs as a possible therapeutic alternative
in various pathologies. For example, in a rat model of
hypoxic-ischemic brain injury (HI), it was found that the
CM-A-MSCs prevented the loss of cortical and hippocampal
volume [21]. After 2 months of ischemia, the behavioral and
learning tests showed that the subjects treated with CM-A-
MSCs presented significantly better results in the functional
maze water tests than controls [21]. A previous study [21]
compared the effects of secretome of MSCs from different

Table 1 Regenerative potential of the secretome from adipose-derived mesenchymal stem cells (CM-A-MSC)

Transplanted cells/medium
condition

Proteins and secreted factors Effect References

Transplant/secretion BDNF Regeneration of tissues through growth of blood vessels, nerves,
and myelination

[226]

Transplant/secretion HGF-HA Vocal cord regeneration [227]

Conditioned medium FGF, HGF, VEGF, SOD3, SOD2 Increase in the activity of SOD and GPX protect human dermal
fibroblasts from oxidative damage, reducing cell death by
apoptosis

[228]

Conditioned medium IGF, HGF, TGF-β1, VEGF Angiogenesis, epithelization and remodeling [63]

Conditioned medium TGF-b1, VEGF, bFGF, KGF, PDGF-A,
HGF

Decrease in the rate of erythema, melanin, and transepidermal
water loss

[229]

Conditioned medium HGF, G-CSF, GM-CSF, IGFBPs, IL-12,
PDGF-AA, PEDF, SODs

Antioxidant and reparative effect mediated by the activation of
dermal fibroblasts and keratinocytes

[230]

Transplant/secretion TGF-b1, VEGF, bFGF, KGF, PDGF-A,
HGF

Angiogenesis, anti-apoptosis, increased vascular growth, and
immunomodulatory effects

[231]

Conditioned medium No information Protection of cortical neurons against apoptosis and excitotoxicity
of glutamate; increased GAP-43, ATP, NAD+, and NADH

[232]

Conditioned medium IGF-1, BDNF Neuropathological recovery and increased cognitive and motor
ability in the long term after a hypoxic-ischemic lesion

[21]

Conditioned medium TNF-α Accelerates wound closure, induces angiogenesis, proliferation,
and infiltration of immune cells in a cutaneous wound

[233]

Secretome bFGF, VEGF, NGF, SCF, HGF Improve the metabolic viability of hippocampal cultures and
neuronal cell density

[82]

Conditioned medium TIMP-1, SPARC Neuroprotective effects against retinal damage; used as a treatment
for retinitis pigmentosa and macular degeneration

[234]

Transplant/secretion IL-6, VEGF, Angiogenin, MCP3,
MCP1, IGF1, TGF-ß, PDGF-BB,
bFGF, EGF

Induce bone regeneration in lesions created surgically in the
rabbit’s jaws

[18]

Secretome PEDF, CADH2, IL-6, SEM7A, GDN Improve neurite/axonal growth in an in vitro model of axonal
regeneration based on DRG explants

[220]

Secretome VEGF, HGF, FGF2 Increase neovascularization and improve wound healing in injured
tissues

[235]

Exosomes Neprilysin protein (NEP) Reduction of secretion and intracellular levels of β-amyloid [236]

Secretome/pre-conditioning
with deferoxamine

Pro-angiogenic, neuroprotective and
anti-inflammatory factors

Treatment of diabetic neuropathy [237]

Conditioned medium BDNF, TGFβ Axonal morphological recovery, electrophysiological
characteristics, and normal cell viability

[238]

Conditioned medium NGF Increase neuritogenesis of PC12 cells [239]

Conditioned medium VEGF, HGF, BDNF Activation PI3-K/Akt y MAPK; reduction of caspase-3 levels [240]
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sources such as adipose tissue, bone marrow cells, and umbil-
ical cord cells and found that the A-MSC secretome has a
greater potential to promote axonal growth than secretomes
of all the other sources [220]. However, a previous study com-
pared the property of differentMSCs to migrate to tumor sites,
to be used as tumor vectors. One of these studies [249] report-
ed that UC-MSCs were more efficient than A-MSC for the
induction of apoptosis but being unable to distinguish differ-
ences in their capacity of inducing cell differentiation [249].
Additionally, similar to other CM-MSCs, the presence of
in vitro and in vivo angiogenic cytokines in CM-A-MSCs
such as VEGF, HGF, and FGF2, which increase neovascular-
ization and improve wound healing in injured tissues, has
been reported [235]. This data suggests that therapy with A-
MSCs and/or CM-A-MSCs could accelerate wound healing
through differentiation and vasculogenesis and other repair
processes.

The effects of CM-A-MSCs were evaluated in pathological
conditions such as SCI, ischemia, and stroke. In an in vitro
model of inflammation due to SCI, the exposure to CM-A-
MSCs stabilized the neuronal population but had no effect on
astrogliosis, which suggests that the effect was due to the
neuroprotective and trophic factors [250]. Similar results were
found in the recovery of neurological deficits in a stroke mod-
el in rats with a faster and more pronounced improvement
compared to A-MSC injection [251].

While there are very few studies in relation to neurodegen-
erative diseases, in AD, the secretome of the CM-A-MSCs also
showed an effect when they were associated with neprilysin.
This association gave exosomes the characteristic of being en-
zymatically active, with the property of acting on N2 cells to
decrease the levels of the intracellular and secreted forms of Aβ
peptide [236]. These results suggest that this approach can be
tested in other studies as a possible treatment for AD.

The evidence presented so far has shown that the beneficial
effect of CM-A-MSCs on different pathologies is probably
due to different bioactive molecules synthesized and released
by the MSCs. This has encouraged the use of CM-A-MSC
after some pre-conditioning of the MSCs. For example, it is
known that MSCs that were pre-conditioned with deferox-
amine increase the production of pro-angiogenic, neuropro-
tective, and anti-inflammatory factors, which can be utilized
as a possible treatment for diabetic neuropathy [237]. Another
approach used to enhance the beneficial effects of secretomes
from A-MSCs was the pre-stimulation of MSCs with TNF-α
and IFN-γ. This pre-stimulus caused the cells to release TSG-
6, a protein that may be mitigating the visual deficits induced
by a blast lesion through its anti-inflammatory properties on
activated microglia and endothelial cells [252]. On top of that,
it was recently found that the neuroprotective effect of CM-A-
MSCs is affected by N-acetyl-cysteine supplementation. The
study suggests that neuronal restorative effect of CM-A-
MSCs is associated with not only the release of essential

neurotrophic factors but also the maintenance of the redox
state to preserve neuronal function [238].

Finally, another study described an additional mechanism
of action by which the CM-A-MSCs exert their protective
effect [239]. In this study, it was found that the activation of
the AMP-activated kinase pathway (AMPK) was induced by
the presence of NGF, which has been reported in the A-MSC
secretome and involved in the neuritogenesis of PC12 cells
[239]. In correlation with these findings [240], the authors
found that CM-A-MSCs protected PC12 cells from apoptosis
caused by glutamate excitotoxicity. However, in this case,
other factors were found such as VEGF, HGF, and BDNF that
are believed to be related to the activation of pathways such as
PI3K/Akt and MAPK or in the reduction of caspase-3 levels
[240]. Taken together, these results may be useful for the
treatment of stroke or neurodegenerative diseases.

Effect of the Secretome of Mesenchymal Stem Cells
on Glial Cells and Their Involvement in Cerebral
Pathologies

After brain injury, astrocytes are the first to respond generating
a physiological action, either releasing proinflammatory and/
or anti-inflammatory factors [253]. Despite these and other
beneficial effects of astrocytes for the nervous tissue, thera-
peutic alternatives as well as the search for possible treatments
for various brain pathologies have been focused mainly at the
neuronal level, forgetting other cells and their protective prop-
erties [254]. In this sense, some studies have recently focused
their interest on evaluating the effect of CM-A-MSCs, CM-
BM-MSCs, or CM from another type of MSCs in the protec-
tion or stability of glial cells such as microglia and astrocytes.

In relation to microglia, a study carried out using the im-
mortalized cell line of murine microglia BV2 and primary
postnatal brain cell cultures activated by lipopolysaccharides
(LPS) revealed that treating the cells with CM-MSCs reduced
the mRNA and protein expression of proinflammatory cyto-
kines (IL-6 and TNF-α), JNK, NF-κB, and c-Jun. These re-
sults suggested that MSCs can modulate microglial activities
through paracrine effects [255]. Similar results, though more
focused on the release of neuroprotective substances, were
reported in murine microglia N9 through an interaction of
these cells with MSC. It was suggested that MSCs, via releas-
ing of paracrine factors, can change the phenotype of the mi-
croglia from harmful to neuroprotective, increase autophagy
and and release of substances associated with CX3CR1, thus
favoring the protection of the tissue [256]. The previous re-
sults are supported by studies carried out in co-cultures with
MSCs suggesting that MSCs could restore the homeostatic
functions of the retinal microglia against light damage, mainly
through activation of CX3CL1/CX3CR1 axis [257].

Torrente and colleagues using a model of glucose depriva-
tion and mechanical injury (scratch) reported that the CM-A-

Mol Neurobiol (2019) 56:6902–6927 6913



MSCs enhance viability, increase wound closure, and reduce
the production of ROS in an astrocytic model (T98G) under
glucose deprivation [258]. This result was consistent with the
decrease in the percentage of fragmented and condensed nu-
clei found using the same model previously reported [259].
Also, in the case of astrocytes, some studies have reported
additional effects of CM-A-MSCs on viability, morphology,
mitochondrial protection, and ROS regulation, among others
(Tables 2 and 3). On the other hand, it has been reported that
another type of cells (HUCPVC) releases neuroregulatory fac-
tors that have an impact on cell density. For example, CM-
HUCPVC not only influenced the density of neurons, but also
protected the viability and increased the proliferation of astro-
cytes and oligodendrocytes; however, they had no effect on
microglial cells. These results suggest that the paracrine fac-
tors ofMSCs can mediate not only cell density, but also can be
used in brain tissue recovery and reparative therapy of glial
cells in different pathologies [262, 263]. It is well-known that
mitochondria are one of the main organelles that are affected
in response to pathological change in the brain environment
[265]. Considering this evidence, several studies have
evaluated the effect of CM-MSCs on the protection of the
mitochondria and their functions. This investigation has

revealed that bioactive factors and molecules secreted by
different MSCs can reduce the production of ROS.
Specifically, the CM-A-MSCs had an effect in decreasing
the production of superoxide (O2−) [258]. In another study,
the authors found that the CM-A-MSCs also protected against
oxidative stress damage, reducing DNA oxidation, lipid per-
oxidation, and nitration of proteins caused by glucose depri-
vation and mechanical injury (scratch) in an astrocyte cell
model (T98G) [259]. Interestingly, in an in vitro model of
ischemic human astrocytes, the pre- and post-ischemia treat-
ment with CM-hDPSCs and CM-BM-hMSCs attenuated the
expression of GFAP, nestin, and musashi-1 induced by
oxygen-glucose deprivation (OGD), blocked ROS produc-
tion, and positively regulated IL-1. This finding supports the
hypothesis that trophic factors produced by hDPSCs and BM-
hMSCs represent an alternative source of cell therapy for is-
chemic stroke [264].

This extensive research approach on the effect of CM-
MSCs in the protection of mitochondrial functions in astro-
cytes has also been confirmed in models of glucose depriva-
tion and mechanical injury (scratch), where cells treated with
the CM-A-MSC regained the potential of mitochondrial mem-
brane [259, 260]. Besides, the conservation of the cellular

Table 2 Effects of the secretome
of mesenchymal stem cells on
glial cells

Cells Source Protective effect Reference

Microglia CM-MSC Decreases in mRNA expression (IL-6 and TNF-α)

Reduction in expression of proteins NF-κB, JNK, and c-Jun

[255]

CM-MSC Change of proinflammatory reactive phenotype to
neuroprotective phenotype

[256]

Astrocytes CM-A-MSC ↑ Cell viability protection [258]

[260]

↑ Nuclear fragmentation and condensation [258]

[260]

↑ Preservation of mitochondrial membrane potential [258]

[260]

↓ Lipoperoxidation [259]

↓ Nitration of proteins [259]

↓ DNA damage [259]

↑ Number of mitochondria and mitochondrial crests [259]

↑ GFAP [259]

[261]

↓ Reactive oxygen species [259]

[260]

CM-HUCPVC ↑ Proliferation of glial cells [262]

[263]

CM-A-MSC ↑ Polarity index [260]

CM-BM-MSC

CM-DPSC-MSC

↓ Interleukin-1 (IL-1) [264]

CM-A-MSC Positive regulation of neuroglobin [259]

CM-MSC Inhibition of p38 MAPK and JNK

Regulation of p53 and STAT1

[261]
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Table 3 Therapeutic strategies of CM-hMSC in different CNS pathologies

Source Pathology Model Application Advances References

Secretome
normoxia--
preconditioned human
mesenchymal stem cells

TBI Adult male rats Intravenously Attenuation of motor deficit and
cerebral infarction of rats by
reducing neuronal cell loss and
apoptosis and promoting VEGF
production

[164]

BM-MSC and
CM-BM-MSC

TBI Adult
(12-week-old)
C57BL/6 male
mice

BothMSC transplantation
and MSC conditioned
medium

Decreased a broad cytokine profile in
tissue in vivo models, increased the
proliferation of NSC, and induced a
higher expression of GFAP in vitro
models

[9]

Exosomes derived from
human umbilical cord
mesenchymal stem cell
(UC-MSC)

Nerve
injury-induced
pain

Male rats Intrathecal infusion of
exosomes

Suppressed nerve ligation-induced
upregulation of c-Fos, CNPase,
GFAP, and Iba1 also inhibited the
level of TNF-α and IL-1β

[165]

Conditioned medium of
bone marrow-derived
mesenchymal stromal
cells

Neuropathic pain Male C57Bl/6 mice BothMSC transplantation
and CM-BM-MSC by
endovenous injection

The levels of IL-1β, TNF-α, and IL-6
were found reduced

[166]

Normoxic-preconditioned
BM-MSC secretome

TBI Adult male rats Administered
intravenously of
normoxic--
preconditioned
BM-MSC secretome

Greater number of newly forming
neurons and significantly less than
the controls in brain-damaged
volume and apoptosis

[167]

Bone marrow-derived
mesenchymal stem cells

Optic nerve crush Adult rats MSC transplantation Significant increase IN the number of
Tuj1 and Brn3a positive cells in the
retina and the expression of FGF-2
and interleukin-1β in the ganglion
cell layer of the retina stimulated
the axon regeneration

[168]

Bone marrow- derived
mesenchymal stem cells

Glutamate
excitotoxicity

Mice embryos MSC conditioned
medium

MSC-mediated neuroprotection
against glutamate excitotoxicity
involved a reduced AMPAR
function containing NMDAR and
GluR1 and a TNF-mediated
neuroprotection

[169]

Bone marrow- derived
mesenchymal stem cells

Parkinsonian
model

Adult female rats Intravenous MSC
administration

Neuroprotection of dopaminergic
neurons at least partly through
anti-apoptotic effects of SDF-1α.

[170]

Human bone marrow
mesenchymal stem cells

Neurodegenerative
disorders

Brain stem
neuronal cell
cultures

MSC conditioned
medium

Protected catecholaminergic and
serotonergic neuronal perikarya and
transporter function from oxidative
stress through the secretion of
glial-derived neurotrophic factor

[25]

Bone marrow-derived
mesenchymal stromal
cells (BM-MSCs)

Mesenchymal stromal
cell-conditioned media
(MSC-CM)

Multiple sclerosis Phase I/IIa clinical
study human
patients

BM-MSCs and
CM-BM-MSC were
injected intrathecally
into patients

A decrease of 4 and 3.5 points on the
EDSSwas achieved in two patients;
decreased lesion

[171]

Bone marrow-derived
mesenchymal stromal
cells (BM-MSCs)

Chronic
demyelinating
murine model

6-week-old
C57BL/6 mice

Intraventricular injections
of MSCs

Increased neural stem progenitor cell
(NSPC) proliferation also activated
endogenous functional
remyelination

[50]

Bone marrow-derived
mesenchymal stem cells

Variety of
neurological
diseases

Neuronal cultures
were prepared
from the cortices
of E16 rat
embryos

MSC conditioned
medium

Promoted neuronal survival in vitro
and activated the PI3kinase/Akt
pathway and reduced p38 signaling

[172]

HUCPVC conditioned
medium (CM)

Axonal injury Primary cultures of
rat embryonic
hippocampal
neurons

MSC conditioned
medium

Promoted axonal outgrowth in CNS
neurons and this effect was
mediated by BDNF

[173]

Mol Neurobiol (2019) 56:6902–6927 6915



ultrastructure not only preserves the number of mitochondria,
but also the integrity of their crests [259].

It has been reported that the polarity index, consid-
ered as a parameter related to cell migration and cell
morphology, is positively affected by the CM. A-
MSCs improved cell morphology and the polarity index
of the astrocytic cell line T98G [259] and in human-like
astrocytes subjected to glucose deprivation and mechan-
ical injury (scratch) [260]. These results not only pro-
vide evidence of the protective effect of biomolecules,
but also open the venue of a possible new therapeutic
alternative in the protection of astrocytes against TBI. A
plethora of evidence shows that the protective effect of
MSCs can be exerted through regulation of oxidative
stress, improvement of cell migration, and mitochondrial
protection mediated by factors and/or bioactive
neuroregulatory molecules. However, the mechanism
by which these molecules present in CM-MSCs exert
protection on glial cells has not been fully elucidated
and more studies are still needed. In an in vitro ische-
mic human astrocyte model, it was found that CM-
MSCs positively regulated IL-1β as a cytoprotective
factor against cell death [264]. Also, in an astrocytic

(T98G) model subjected to glucose deprivation and me-
chanical injury (scratch), the genetic silencing of
neuroglobin, a protein that is considered to have neuro-
protective effects, prevented the protective action of
CM-A-MSC [259]. Finally, another study [261] showed
that the paracrine factors of MSCs promote the survival
of astrocytes by a mechanism associated with inhibition
p38 MAPK and JNK, regulation of p53 and STAT1,
and downregulation of GFAP after ischemic stroke
in vitro [261] (Fig. 2). Therefore, it is believed that
the factors present in the CM may mediate the expres-
sion or signaling cascade of molecules that favor the
survival and recovery of important cellular functions in
the face of different insults.

Differences of the Secretome
of the Mesenchymal Stem Cells Depend
on Cell Type, Location, and Methodology
Used in the Analysis

For the study of MSCs, different techniques have been devel-
oped. Some studies are based on the approach of shotgun

Table 3 (continued)

Source Pathology Model Application Advances References

Induced mesenchymal
progenitor cells
(MiMPCs)

Peripheral nerve
injuries

Dorsal root ganglia
from chick
embryos

MSC conditioned
medium

Promoted neurite outgrowth via
neurotrophin and cytokine
production

[174]

Bone marrow-derived
mesenchymal stem cells
(MSCs)

Neurological
disorders
involving the
cerebellum

Neuronal cultures
from the
cerebella of E18
rat embryos

MSC conditioned
medium

Protected cerebellar neurons against
toxic insults via modulation of both
the phosphatidylinositol
3-kinase/Akt and MAPK pathways

[146, 175]

Human umbilical
cord-derived
mesenchymal stromal
cells (UC-MSCs)

Oxygen-glucose
deprivation

Cortical neuron
primary cultures
from embryonic
day 16 fetuses

Co-cultured with
UC-MSCs

Neuroprotection in neonatal cortical
neurons

Reduction in the number of neurons
displaying signs of
apoptosis/necrosis

[176]

Limbus stroma-derived
mesenchymal stromal
cells (L-MSCs)

Brain ischemic
injury

Both rat primary
cortical neuron
culture
(1–2 days old)
and adult male
rats

Normoxic and hypoxic
conditioned media

Neurotrophic factors stimulated
neurite outgrowth and protected
neurons against brain ischemic
injury

[177]

hUCB-MSCs Intraventricular
hemorrhage
(IVH)-induced
brain injury

Newborn rats MSC transplantation BDNF secreted by transplanted MSCs
play a seminal role in attenuating
severe IVH-induced brain injuries
in newborn rats

[178, 179]

Umbilical cord-derived
mesenchymal stromal
cells (UC-MSCs)

Neonatal
intraventricular
hemorrhage
model

Neonatal mouse
model at
postnatal day 5

Intravenously
administered
UC-MSCs

Attenuated periventricular reactive
gliosis, hypomyelination, and
periventricular cell death

[180]

Bone marrow-derived
mesenchymal stem cells
(MSCs)

Oxygen-glucose
deprivation
(OGD) model of
cerebral
ischemia

Primary rat cortical
neurons from the
cerebral cortex
rats at embryonic
day 17

MSC conditioned
medium

Rescued cortical neurons from
apoptotic cell death

Increased phosphorylation of STAT3
and Akt

[181]
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proteomics and on the proteomic approach based on candidate
proteins. Other methodologies have focused on changes of
protein expression using MSCs cells, their conditioned medi-
um, or only from extracellular vesicles in models of response
to the disease, cellular differentiation, or undifferentiated cell
states [26, 96]. Considering the above, the great variety of
approaches in proteomics studies and MSC secretome analy-
sis do not yet provide a clear, complete, and reliable knowl-
edge of the molecules secreted from MSCs. One instance
could be the study conducted by Kapur and Kats [244] and
Makridakis et al. [26], who assessed a compilation of the
proteins observed in the shotgun proteomics of the CM-A-
MSC and CM-BM-MSC studies. The authors point out how
the characterization and detection of the secretome protein
differ with respect to the type of cells that are analyzed,
secretome preparation method, and detection method [26,
244].

Most proteomic studies are based on the analysis of differ-
ent stages of differentiation (e.g., from the adipose stem cell to
a fully differentiated adipocyte) and then the comparison of
the up- or downregulation of genes. Nevertheless, each study
is circumstantial and shows only a few proteins similarly
expressed. Altogether, this evidence implies a great need for
a more biology-related data. The increasing number of pro-
teins that are identified in different environments (pathological
or non-pathological) is creating a great understanding of pro-
tein functions by placing them in different locations at differ-
ent levels of expression. However, some precautious must be
noticed because some of these proteins may be misplaced and
represent artifacts, while others may bemisinterpreted [26, 96,
103, 244]. For example, differences that can be found between
the proteomic analysis between CM-MSCs and MSCs, de-
pending on the location of the protein in the cell could repre-
sent different related functions with the moment depending on

Fig. 2 Effect of the conditioned medium of mesenchymal stem cells
(CM-MSC) on glial cells and diseases of the central nervous system.
There are very few studies that evaluate the effect of CM-MSC on glial
cells. Among the reported findings are the protection of cell viability,
mitochondrial functions and ultrastructure, as well as the increase in the
polarity index related to cell migration capacity. Similarly, ROS reduc-
tion, GFAP expression, modulation of p38/MAPK and JNK, and regula-
tion of p53 and STAT have been described as well. All these protective

characteristics mentioned above convert the secretome of mesenchymal
stem cells into an alternative therapeutic treatment in diseases that affect
the CNS. As an example, an improvement in the integrity of proteins and
lipids in models of ischemia and TBI has been described through the
reduction of oxidative stress. In fact, the conditioned medium of mesen-
chymal stem cells derived from adipose tissue increases the expression of
the neuroglobin protein
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its subcellular location (peri/extracellular) [103]. This repre-
sents a key obstacle in what is the function of eachmolecule in
response to a pathological event and therefore will be related
to the potential action upon a therapeutic use. However, it is
essential to perform a thorough and careful characterization of
the secreted molecules as well as to establish complete and
uniform guidelines and criteria for obtaining them so that it
can be applied and produced for clinical use.

Conclusions and Further Directions

It is a fact that not only the MSCs but also the paracrine factors
and/or bioactive molecules synthesized and secreted by these
cells have great benefits on the nervous system by relieving and
reducing the impact of the lesions on brain functions. MSCs’
secretome holds a promise for the regeneration of neurites,
neuronal protection, preservation of astrocytic functions, repair
of cell bioenergetics, reduction of excitotoxicity and ROS gen-
eration, and promotion of axon growth. Recent research has
revealed different actions induced by MSCs’ secretome includ-
ing inhibition of pathways related to cell death and activation of
cell survival and protection signals. It is important to further
study the effects of MSCs’ secretome on glial cells since previ-
ous studies focused exclusively on neurons.

It is also important to extend the studies on the mecha-
nism of action of the factors and/or bioactive molecules
present in the MSCs’ secretome on pathologies such as
TBI, ischemia, and stroke. Pre-clinical and clinical studies
may allow advances in the knowledge of the effectiveness
of CM-MSCs; therefore, these agents may become a prom-
ising treatment in neurological conditions for which there
are not still effective therapies. This approach may solve the
problems of differentiation and migration of the MSCs to
the site of injury and would add the advantages that the use
of exosomes or specific biological factors secreted by from
MSCs will facilitate the transport, storage, and manage-
ment of the therapeutic preparations at the clinical stage.
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